ドローンを活用した3次元空間内の

乱気流測定について

伊藤 貢司1

Turbulence Measurement in Three-Dimensional Space Using Drones Koji Ito

1 はじめに

空飛ぶクルマは比較的低高度を高頻度で飛行することが想定され、地表との摩擦による 風の乱れの影響を受け易い事から低層乱気流のリスク評価が必要になることが考えられる。 一例として離発着場 (バーティポート) の選定のための年間を通じた低層乱気流の影響の安 全性評価や、乱気流の発生確率を定量化して必要に応じて回避運用を検討することが求め られる。

一方、現状の乱気流の数値表現手法に目を向けると課題が多い。竜巻や強度の乱気流などに対する安全対策は進められているが、中程度や弱い乱気流に対しては充分な定量化が行われていない。空飛ぶクルマには気流の乱れによって引き起こされる機体の動揺の度合いは各機種によって異なることが考えられ、比較的弱い乱れであっても影響を受けやすい機種の運航も想定される。

本研究はこれらの課題を解決するため、乱流力学の知見に基づくラプラス分布を用いて 大気の乱れを連続量で数値化し、バーティポートを想定した場所でドローンに搭載した風 向風速計等により空間上の乱気流の可視化を実証した。具体的には、先行研究で示された 「限定された方向成分の時間変動による解析」を任意の方向(軸)へ拡張し、その妥当性を 超音波風向風速計による地上観測で検証した。これを踏まえ、ドローン上部に小型超音波風 向風速計と熱線風速計を設置し、バーティポートに見立てた広場周辺でホバリング(定点) および自動・手動の定速直線飛行による移動観測を実施して、乱れの度合いを評価した。

本研究により、離発着場・離発着ルート・飛行経路の選定、ならびに強風時の運航可否およびリスク評価を確率に基づき定量化する道筋が示された。

1

¹ 桜美林大学航空学群教授

2 乱気流の表現手法の問題点

(1) 地上風と乱気流の関係

地上生活者にとって、風速と気流の乱れは比例関係にあるものと受け取られている。例えば気象庁では天気予報などで用いる用語として風速は次のようにまとめられ⁽¹⁾、風速が20m/s 以上30m/s 未満の風は「非常に強い風」として天気予報で用いられている。実際にこの程度の風が引き起こす被害は地上においては大きなものであるが、定常風成分と突風成分による影響の区別が困難である。地上においては風速が大きいほど建物等との摩擦などで突風成分が発生し、両者の影響で被害を及ぼすからである。

一方、高高度を飛行するジェット旅客機は仮に秒速 100m/s 程度の強いジェット気流中を飛行しても風速等の変動が無い限りその飛行は安定している。これは風速の定常成分が100m/s で、突風成分(変動、乱流)が皆無の場合の例えであり、定常成分が一定であれば揚力や抗力の変動が無く、安定して飛行できるという特性を示すものである。すなわち、飛行姿勢を変動させる主因は風速の時間変動成分であり、空飛ぶクルマも同様と考えられる。

(2) 航空気象における通報の概観

次に航空気象における乱気流(Turbulence)や低層風(Low-Level Wind Shear)の通報を紹介する。

- SIGMET:広域・重大な現象(例:CAT)を通報。
- AIRMET: 比較的小規模・比較的軽度な現象を通報。
- PIREPs:パイロットの実体験に基づく通報(強度区分は離散的)。
- LLWAS:空港周辺の低層風急変を検出し通報。

これらは有用だが、発生頻度を連続的な数値で表すことができないという限界がある。

(3) METAR/TAF 等の表現上の課題

次に METAR や TAF などの航空気象通報で使われる風の乱れや突風の存在を示すキーワードを紹介すると共にその課題を示す。

- Gust (G): 一時的増速の上限を示すが、頻度情報を含まない。
- Max:最大瞬間風速の提示にとどまる。
- 定常風(平均風):日本では離着陸に2分間平均風速⁽²⁾を用いるが、細かな変動情報は欠落する。

以上より、風の時間変動の頻度分布を連続量で扱う指標が必要である。

(4) ドローンの風速目安

最後にドローンに関する風速の目安からその課題を考える。国土交通省航空局標準マニュアル⁽³⁾ (令和4年6月20日版) には、「無人航空機飛行マニュアル (DID・夜間・目視外・30m・危険物・物件投下) 場所を特定しない申請について適用の3章安全を確保するために必要な体制には、風速5m/s 以上の状態では飛行させない」と明記されている。また、無人

航空機飛行マニュアル (150m 以上・DID・夜間・目視外・30m・物件投下) 研究開発を目的とした申請について適用の同じ箇所⁽⁴⁾には、「5 m/s 以上の突風が発生するなど、無人航空機を安全に飛行させることができなくなるような不測の事態が発生した場合には即時に飛行を中止する。ただし、5 m/s 以上の突風で飛行可能であることを、製造者等が定める取扱説明書、設計図等又は風洞など再現性のある設備を用いた地上試験で事前に確認している場合は、その条件による」と記されている。

この記述の風速制限は離着陸に限定していないため、全飛行区間に適用されると考えられるが、記述からから見いだされる課題は、平均風と突風を同一視しており、また平均の定義(時間幅)の明示がない事である。平均風と突風を分離し、突風の確率で運用判断できる指標が望ましい。

3 ラプラス乱流強度の提唱

(1) ラプラス分布と指数分布の関係

前章では乱気流や風に関する通報方式や表現について紹介し、ドローンの飛行基準と照らし合わせてその課題を示した。その課題を解決する為に乱流力学の理論 (5) をベースにして旅客機の飛行データからラプラス分布に照らし合わせて乱流を数値化する研究 (6) が行われた。本研究は上記論文を出発点にしており関連が深い内容であるため、上記論文が示す乱流の数値化手法を改めて紹介する。

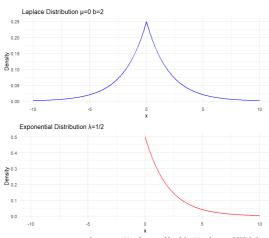


図 1 ラプラス分布と指数分布の関係

ラプラス分布(図1上)は指数分布(図1下)を背中合わせに2つ合わせた山形の形状をしており、2重指数分布とも呼ばれる。ラプラス分布は正規分布よりも尖度が高く、中心がより鋭いピークになる。つまり大部分の変動は平均値の近くに集中する一方で、まれに大きな変動が発生することを表す。この性質は、突発的な変動が混在するデータを説明するのに適している。分布の形状を決定づけるパラメーターはb(尺度パラメーター)およびμ(位置パラメーター:頂点の位置)の

2 つがある。図 1 のラプラス分布は b を 2、 μ を 0 として作図した。 b の値によって山の形状が表現され、この値が大きいと山の頂点が低くなり、裾野が広くなる。

乱流力学の数値計算では、乱流の風向に沿った風速の成分の時間差、または風向に直交した軸の成分の時間差で計算すると、その分布は指数分布で近似できることが示されている。この場合、風速の変動値の絶対値をとったため指数分布で近似しているが、絶対値をとらずに負の値をそのままにして分布形状を確かめるとラプラス分布になると考えられた。前述した旅客機の飛行データに関する筆者の研究では、旅客機が着陸する際に測定した風の向かい風成分がラプラス分布で近似できることが示されている。

本研究では横軸を乱流の風向に沿った風速の成分の時間差にしたときに現れるこのラプラス分布の尺度パラメーターbをラプラス乱流強度と呼ぶ。

ラプラス乱流強度が大きい程裾野が広い山の形状になり、希に発生する激しい風速変化 の発生確率を表現することが出来る。

(2) ラプラス乱流強度と突風発生確率

ラプラス乱流強度はその時の気流の乱れを数値で示すものであるが、その値を活用すると希にしか起こらない急激な風速の増加(突風)の頻度を確率で示す事ができる。これによって、あるラプラス乱流強度の条件下で例えば風速が1秒間で5m/s以上増減する突風の発生確率を算出する事ができる。

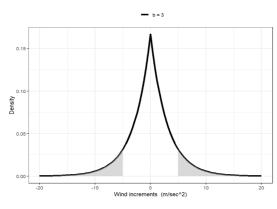


図 2 ラプラス分布の確率

図 2 はラプラス乱流強度が 3 (次元を有する値ではあるが省略した)を想定した乱流時の確率密度曲線である。 $5m/s^2$ 以上および $-5m/s^2$ 以下の範囲を灰色で示しているが、全体の面積に対する灰色の面積の比率が、1秒間で $\pm 5m/s^2$ より激しい速度増減が起こる確率になる。これを計算で求めると 18.9%になる。なお、統計学の概念からは $5m/s^2$ のようにピンポイントでの確率を求めることはできず、 $5m/s^2$ から ∞ の幅の確率や、ある

いは $5m/s^2$ 以上 $6m/s^2$ 未満などのような、幅を持った風速変動に対する確率であれば求めることができることに着目されたい。またラプラス乱流強度が小さく、大変穏やかで安定しているときであっても例えば $10m/s^2$ から ∞ の幅の突風確率はゼロでは無い。

これらの概念によって弱い風の乱れから極めて強い風の乱れまでの程度と発生頻度を連続値として切れ目無く表現し、そのリスクを数値化することが可能になる。例えば上述したラプラス乱流強度が3の場合、その空間を飛行する空飛ぶクルマが次の1秒間に±5m/s²より激しい突風に遭遇する確率は18.9%である。別の表現をすると、5.3秒に1回の割合で±5m/s²より激しい突風に遭遇すると推測することが出来る。これは従来の風速によるリスク評価では不可能であったものであり、バーティポートの安全評価、機体の運用制限と比較した運航リスク評価を実現することを可能にする重要な指標となる。

4 ドローン観測に先駆けた地上観測

(1) 地上観測の目的

ドローンによる乱気流観測のために、それと並行して地上観測を実施して簡易的な計算 手法を試し、その実用性を確認した。以下にその要点を記す。

先行研究である乱流力学の数値計算では乱流が流れる軸に沿う風速成分の時間変化がラプラス分布で近似することが確かめられたが、現実の乱流の方向は一定では無く、往々にして

ランダムに変化する。そのため風向が瞬時に変動する度に計算する風速の軸を変更して再 計算する事は現実的では無い。そこで計算する軸を固定して、その軸に沿う風速成分の時間 変化がラプラス分布で近似できることを確認し、乱流度を算出することを試みた。

また、風向を観測できない熱線風速計による観測を想定し、風速値の時間変動値がラプラス分布で近似できることを確認し、他の手法で算出した乱流度と比較した。

(2) 地上観測装概要

地上観測装置は TriSonica Mini⁽⁷⁾、ULSA M5B、ULSA PRO ⁽⁸⁾(図3全天候型超音波風向風速計)を自宅敷地に設置した高さ約7メートルのアルミ製の柱頂部に固定し取得した。ULSA M5B は防雨形では無いため、観測は降雨や着霜を避けて晴天の昼間に行われた。一方、ULSA PRO は全天候型であるため 24 時間観測が可能であり、2024 年 5 月から継続して観測が続けられその結果はリアルタイムに公開されている。

観測方法は、各装置によって取得された風向風速を10Hz の頻度でラズベリーパイによって取得し、CSV データとして SD カードに記録すると共に、1Hz の頻度でMQTT 通信によってサーバーに送り、InfluxDB(データベースソフト)に記録した。観測装置の健全性とデータの確認は InfluxDB に接続した Grafana (グラフ化ソフト)を介してノート PC によって常時行った。

更に観測地点を拡大するために ULSA M5B を乗用車上部にとりつけた車載観測も実施した。(図 4)

図 3 ULSA PRO メーカーサイトから転載

図 4 車載観測装置

(3) 任意の軸に沿った風速成分によるラプラス乱流強度の算出

10Hz 観測データの一例を以下に示す。8m/s の瞬間風速が吹く 2025 年 1 月 25 日に記録装置の充電時間をはさんで約 2 時間の観測を行ったデータの一部である。

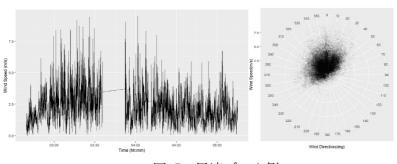


図 5 風速データ例

機器の機首方向から10°毎に刻んだ軸成分で確かめた。

ラプラス乱流強度を求める為に重要な要素は粒度、すなわち一つ一つのデータの適切な時

先行研究では乱気 流の風向方向及びそれに直交する軸など の固定された軸成分 の時間変動値がラプ ラス分布で近似出来 る事が確かめられた が、本研究では観測 間間隔設定である。粒度が 0.1 秒などの小さい値ではノイズの影響を受ける懸念が生じる。 一方粒度が大きければ細かい傾向を現す事は難しくなる。従ってその目的(短期変動/長期 変動)に応じて妥当な時間間隔があると考えられる。

これを検証する為に最初に測定機器の限界である 0.1 秒 (10Hz データ) で b を求めた。 しかし懸念されたように観測ノイズが多く、風速の差分は非現実的に大きくなる場合があった。そのため 10Hz のデータから 1Hz に間引きした。この手法としては、単純な間引きは

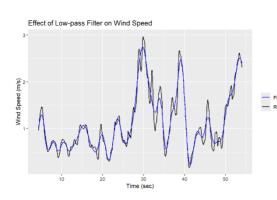


図 6 アンチエイリアスフィルタ することが出来ると考えたからである。

採用せずに 0.4Hz のカットオフ周波数、次数 4 によるアンチエイリアスフィルタを用いた。すなわち図 6 のように 10Hz のデータからアンチエイリアスフィルタを介した10Hz の風速、及び風向それぞれのデータを求め、その後 1Hz に間引いた。1Hz の根拠であるが、航空機に搭載されて記録している機器も含めて多くの機器は1秒間隔で記録している現状があり、そのデータを活用

このように、妥当な粒度を1秒と考え、その後、全観測時間にわたって10°刻みの方位

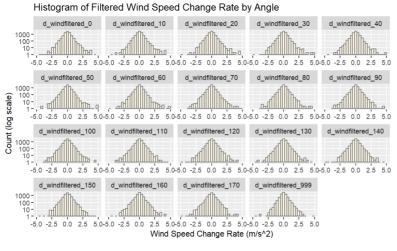


図 7 10° 刻みの成分毎のヒストグラム

に沿って 18 の風速の成分値を算出し、図7のヒストグラムにした。最も下の右端、d_wind_999 は成分値ではなく、風速を直接採用したものであり、その目的は後述する。各ヒストグラムは縦軸を対数軸にしている。その理由は対数軸にすることによってラムが二等辺三角形になり、ラプラス分布で近似できることを示す事が出

来るからである。この事は図 1 の縦軸を対数軸にすると両分布とも直線が現れることで示す事が出来る。

図7を見ると18の全ての軸で二等辺三角形の形状であることが確かめられた。検定にかけると完全にはラプラス分布には沿っていないという結果が得られたが、グラフの形状からラプラス分布に特有の二等辺三角形の形状が表れている。このことから特定の軸にとらわれずに任意の軸で計算した結果もラプラス分布で近似できる事がわかった。

そこで各軸に沿ってラプラス乱流強度を計算した。次にその具体的な方法を 2025 年 8 月 25 日の風速データ (24 時間観測データ) を元に図示する。

最初に風速と風向を 0.1 秒毎に測定し、アンチエイリアスフィルタで処理し、①のように

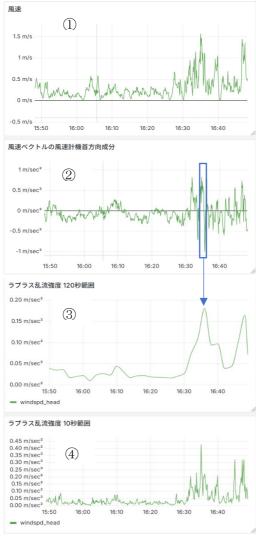


図 8 ラプラス乱流強度計算方法

1 秒毎の値に間引きする。次に特定の軸に沿っ た風速成分を求める。②は風速計の機首方向の 軸に沿った風速成分を示している。次に③の矩 形範囲で示すように120秒の連続する範囲でデ ータを切り出す。120秒は2分間風速計の観測 時間幅を参考にした値である。それによってデ ータの総数は120個になり、それらの絶対値を とり、平均値を求めると最尤法で求めたラプラ ス分布のb、すなわちラプラス乱流強度になる。 ③、④では16時34分1秒から16時36分0秒 までの 120 秒間の風速データによって 16 時 35 分0秒のラプラス乱流強度を求めた結果を示し ている。つまりある時刻のラプラス乱流強度は その時から遡って60秒間の過去から60秒間の 未来までの値で計算を行った。上記計算を1秒 毎に連続移動しながら行う。

このように計算は加算と乗算だけの単純なも のであるが、求められた b 値は多様な情報を有 している。

なお、④は 10 秒の範囲で計算した結果である。具体的には 16 時 35 分 50 秒から 16 時 36 分 0 秒までの 10 個の風速データによって 16 時 35 分 55 秒のラプラス乱流強度を求めている。

③と④を見比べるとその特性を把握すること

ができる。すなわち 120 秒幅では大きなトレンドを、10 秒幅では細かい変化傾向を把握することができる。また、その値も異なる事がわかる。従ってラプラス乱流強度を計測し、指標として導入する際は、2 分間ラプラス乱流強度: 粒度 1 のように示す必要がある。しかしながら粒度 1 (1 秒) が一般的になれば 2 分間ラプラス乱流強度という名称になり、現在の2 分間風速と同じような扱いになると考えられる。

さて、上記の方法によって粒度 1 秒、測定幅 120 秒の風速計の機首方向に沿ったラプラス乱流強度を算出したが、10°刻みの磁方位に沿った成分によって求めたラプラス乱流強度の分析結果を図 9 に示す。なお、180 度から 350 度が無い理由は、例えば 0 度に沿った成分と 180 度に沿った成分は符号が反転し、その絶対値は同一であり、ラプラス乱流強度は同じ値になるためである。

グラフからわかる傾向は以下の点である。

- ① 時間軸に対する各軸の乱気流指数の変化傾向は概ね等しい
- ② 各時刻での各軸の乱気流指数の分散は変動する
- ③ 各時刻での最大値になる軸は変動するため、どの軸の値を代表値にするのかは決める

ことができない

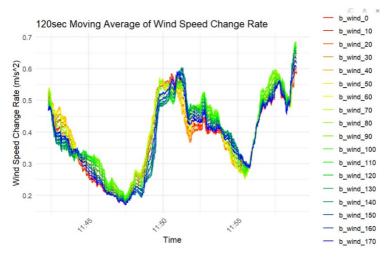


図 9 各軸に沿ったラプラス乱流強度

になると考えた。

このグラフの期間中の気 流の乱れを示す真の値は 各時刻によって異なるが、 18 本の折れ線の傾向は同 様である。

これらから、風向風速計の機首方向などの代表的な軸(図中b_wind 0)に決めて、その軸に沿った風速成分の時間変化によっておおよそのラプラス乱流強度を求めることが可能

(4) 風速値のみによるラプラス乱流強度の算出

前項までの検討は、ドローンに超音波風向風速計を固定することを想定して行われてきた。しかし超音波風向風速計は小型のドローンの上部に搭載すると飛行が不安定になりや

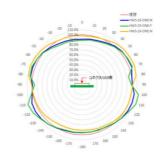


図 10 熱線風速計のサイズ、指向性 メーカーマニュアル ⁽⁹⁾ から転載

すい。そのため更に重量が軽い超小型の熱線 風速計をドローンに搭載することも考えた。 しかしながら熱線風速計はその測定方法から、 風向を取得することは出来ないという短所を 有する。また、採用した計測器(図 10)には 指向性がほとんど無く、全ての方向からの風 速を等しく計測するという特性がある。つま り熱線風速計のデータからは各軸成分の風速 値を求めることが不可能である。

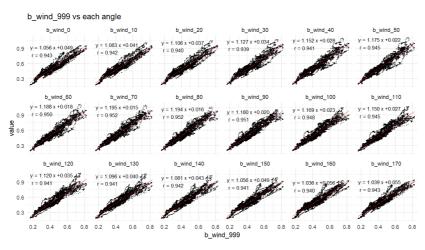


図 11 風速値の b と各軸におけるラプラス乱流強度の相関

これを解決するために、風速値のみの時間差分を使用してりを使用してりをする事を対る事をはみた。具体的には風速計の風速計の人物に対している。 以風速値の18種類の機首方向成分からと風速値の18種類の機首方のプラス乱流強

度の中央値 (図 9 を各時間に縦に切断した断面の中央の値)を比較してその差を検証した。 図 11 は 2025 年 1 月 25 日のデータを元に風速値のみから求めた b (グラフでは b wind 999

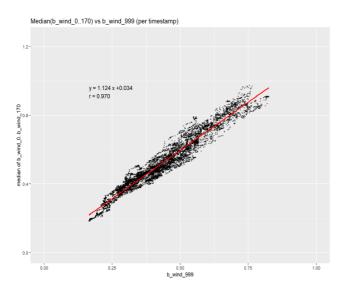


図 12 風速値の b とラプラス乱流強度

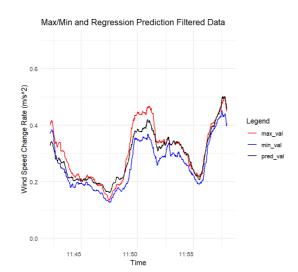


図 13 最大、最小、予測値

と表示)を横軸に、その時のラプラス 乱流強度を縦軸に描いた散布図であ る。その結果、全ての角度において高 い相関が確認された。次に時刻毎に各 角度成分に算出したラプラス乱流強 度の中央値と風速値から求めた b の 相関を求めると、図 12 に示すように 相関係数は 0.970 という高い相関を示 す値になった。図 13 は同じデータか ら時刻毎に各角度のラプラス乱流強 度の最大値(赤)及び最小値(青)と、風 速の変動量を回帰式に代入して得ら れた予測値(黒)を示した図である。こ の図からは予測値の妥当性が確認で きる。

以上の検討から風速値からラプラス乱 流強度を推定する手法の妥当性を示す事 ができた。すなわち、超小型の熱線風速 計をドローンに搭載してラプラス乱流強 度を推定することが可能である。

最後に地上観測から明らかになった事項と方針をまとめる。

- 任意の軸に沿った風向成分からラプラス乱流強度の算出は可能である。
- 時間幅の候補は様々な値が考えられたが、2分間風速値を参考にして2分間とする。
- 粒度の候補も様々な値が考えられるが、1秒とする。
- ドローンに搭載した風向風速計によってラプラス乱流強度を計測することができる。
- ドローンに搭載した風速計によってラプラス乱流強度を推定することができる。

(5) 常時観測データ公開による確認

これまで述べた傾向を常時確認するために Web サイト (10)でリアルタイム公開を行っている。この Web サイトは自宅敷地に設置した超音波風向風速計 (ULSAPRO) からリアルタイムでサーバーに送信し、サーバーの Grafana で可視化して常時公開する仕組みである。これによってラプラス乱流強度と測定幅の関係①、風速ベクトルの風速計機首方向成分②と

そのヒストグラム③の比較、風速④とそのヒストグラム⑤の比較さらに両者から算出した ラプラス乱流強度⑥、⑦の違いを時々刻々と比較できる。測定幅(例:120s)や、成分・スカラー由来の b の違いを時々刻々比較可能であり、将来のバーティポートにおける運用ダッシュボードの雛形となる。また、観測者にとって実際の風の乱れを肌で感じながらこれらの値とその傾向を比較できる。なお、4・3 項では、ある時刻のラプラス乱流強度は前後 60 秒間の値を使用して算出しているが、この実証観測におけるある時刻のラプラス乱流強度は、その時刻から遡って 120 秒間の値を使用している。

図 14 常時観測データ表示による実証 Web サイト

また、このサイトの目的は可視化の公開に加えて、将来のバーティポートに風向風速計を 設置し、ダッシュボードでリアルタイム可視化と運航に関するアラートを発するイメージ を実証するものである。

5. 超音波風向風速計及び熱線風速計を搭載したドローンによる乱気流測定

(1) 観測装置, 記録装置

4章までに地上観測を行い、詳細なデータを元に検証を行ったが、観測点が地上付近に限定されているため、広い空間の乱気流を調査することには限界がある。そこでドローンによる 3次元空間内の乱気流測定が必要になる。そこでこれまでの検討をふまえてドローンに各種計器を搭載して乱気流測定を行った。観測装置は超音波風向風速計 3機種、熱線風速計 1機種、ドローン 2機種、記録装置 1種類を使用した。

1	ULSA M5B	超音波風向風速計(地上設置)
2	TriSonica Mini	超音波風向風速計(ドローン搭載)
3	HWS-19-ONE	熱線風速計(ドローン搭載、風向の計測は不可)
4	DJI Air 2S	ドローン

⑤ DJI Mavic3 Classic ドローン⑥ Raspberry Pi Zero 2W 記録装置

(2) 観測場所,空域

ドローンの観測場所はドローンの飛行許可が不要である人口集中地区 (DID 地区) 以外の対地高度 150 メートル未満の空間で行った。

自宅敷地 地上観測、ドローン観測
 河川敷 地上観測、ドローン観測
 公民館広場 ドローン観測
 駐車場跡地 ドローン観測

(3) 観測目的, 観測方法

観測目的及び方法を以下に示す。

- 1 地上の定点観測を行い、ドローンの値と比較するために、高さ約7メートルのアルミ製の柱頂部に超音波風向風速計(ULSA M5B) および記録装置(Raspberry Pi Zero 2W)とバッテリーを固定し、風向風速を10Hzの頻度で取得した。
- ② 空中の観測のためにドローン(DJI 社製 DJI Air 2S) の上部に超音波風向風速計(TriSonica Mini)および記録装置(Raspberry Pi Zero 2W)とバッテリーを 3Dプリンタで製作した部材で固定し、空間上にホバリングし、風向風速を 10Hz の頻度で取得した。風向風速は鉛直成分を含む 3 次元での測定が自動的に行われるが、本研究では鉛直方向を含まない水平 2 次元成分を使用した。
- ② 空中の観測のためにドローン (DJI 社製 DJI Mavic3 Classic) の中心から約 20cm 前方に熱線風速計 (HWS-19-ONE) を、上部に記録装置 (Raspberry Pi Zero 2W) とバッテリーを 3D プリンタで製作した部材で固定し、空間上のホバリング及び移動しながら風速を 4Hz の頻度で取得した。

図 15 TriSonica Mini

図 16 HWS-19-ONE

3 種類のうち、①を真の値と考え、これと②及び③を比較した。3 種類の観測はドローンのダウンウオッシュの影響を排除するために、水平方向に約 2m離れた空間点で同時に行った。また 3 種類のデータから得られるそれぞれのラプラス乱流強度と、ドローンの姿勢変化をベクトル解析によって数値化した値と比較した。また、ドローンは方位を固定しながら定

強度の時間変化を記録する方法と、 方位を固定しながら手動操縦で一 定の速度で飛行してラプラス乱流 強度の空間変化記録する方法と、自 動操縦によって一定の速度で飛行 (直線、曲線飛行)してラプラス乱 流強度の空間変化を記録する方法 の3種類を行った。

点でホバリングしてラプラス乱流

図 17 同時観測の様子

(4) 超音波風向風速計を搭載したドローンによるラプラス乱流強度の測定方法

この項はドローンに搭載した超音波風向風速計によって空間の定点、及び飛行軌跡上の ラプラス乱流強度の算出が可能になる事を示す。最初に定点でホバリングしているドロー ンによってその場所でのラプラス乱流強度の算出方法を述べる。

図 18 ホバリング、移動中 のドローン

ホバリングの条件としてはドローンの方位(機軸が向いている方位)は変動していても方位情報を取得できれば問題ないが、計算を容易にする為に方位を一定にして風速ベクトルをドローンの正面方向に沿って算出する事を想定した。図18に示したが、時々刻々と変動するオレンジ色の風ベクトルを機体正面の青い軸に投影し、その成分の時間変化によってラプラス乱気流強度を求めることが可能である。次に飛行軌跡上のラプラス乱流強度の算出方法を示す。この場合、ドローンが定速直線飛行を行っている前提が望ましい。図18下はドローンが右斜め前(薄い水色)に定速で飛行しているイメージである。風速計が計測する風は本来の風(オレンジ)とドローンの飛行による見かけの風(赤)を合成した風(緑)になるが、その青い軸への成分のうち、赤の成分の時間変動は無い。

従って緑の風の時間変動はオレンジの風の時間変動と一致すると考えることができる。 これにより、ドローンが定速直線飛行を行っていればラプラス乱気流強度をドローンの正 面方向の軸成分から簡単に求めることができる。なお、定速直線飛行で無くても航空機が風 を求める方法で求められるが、計算が煩雑になる。また、観測幅を120秒にした場合、求め

0s 120s

図 19 飛行区間のイメージ

られたラプラス乱流強度は、120秒の飛行区間の乱流度を示す値であると考えられる。従って飛行速度によって乱流度を示す区間の長さは左右されることになる。

(5) 熱線風速計を搭載したドローンによるラプラス乱流強度の測定方法

前項は超音波風向風速計での測定方法を示したが、本項では熱線風速計での測定方法を示す。指向性を持たず、風向データを取得できない熱線風速計を想定すると、その測定値はホバリング時、風ベクトルのスカラー量になる。このスカラー量の変動値を利用してラプラス乱流強度を推定できることは 4 (4) 項に示した。

次に、飛行時の測定値はドローンの移動による見かけの風と真の風を合成したベクトルのスカラー量(図 18 の緑のベクトルの長さ)になる。ドローンが定速直線飛行を行っていれば赤のベクトルは同一であるため、緑のベクトル(風速)の長さの変動値によってラプラス乱流強度を推定できると考えた。

(6) ドローンの動揺による乱れの2つの算出手法

これまでの分析は風速、風向を測定して乱気流度を数値化する試みであったが、視点を変えてホバリング中のドローンの姿勢変化から乱気流も算出した。

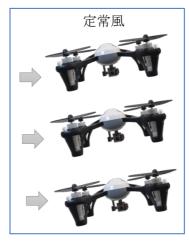


図20 乱気流と定常風による姿勢変化

ホバリングを行うドローンは GPS データから現在の位置を維持しようと時々刻々と自動的にローターを制御する。 GPS の精度は極めて高いため無風時にはドローンは姿勢の変化が殆どなく、空間上に静止しているが、同じとだまろうとして

動画 (II) のように姿勢は大きく変動する。ただし風速が強くてもその時間変化が無く、定常 風である場合、ドローンはある方向に傾いているだけでその姿勢の変動は無いはずである。 手法としてはドローン本体に記録された高頻度の姿勢データを取得し、①主成分分析② ベクトル解析の 2 方法で乱気流を数値化した。その結果②の手法が適切であるということが判明した。ドローンの姿勢情報は本体に記録され、飛行後にダウンロードが可能である。 その測定頻度は 5Hz であるが、計算には 1Hz に間引いて使用した。次項から 2 つの手法による結果を示す。

(7) 主成分分析によるドローンの動揺解析

主成分分析とは多数の変数を持つデータを、できるだけ情報を失わずに少数の変数に要約する方法である。そこでドローンのヨー(水平方向)、ピッチ(縦方向)、バンク(左右方向)角度の時間変化量を 1 つの値にまとめて、その値を動揺値とする主成分分析を試みた。計算は DJI Mavic 3 Classic の 2025 年 1 月 25 日 12 時 58 分からの飛行データを元に R 言語の

表 1 寄与率

STATS ライブラリを使用して行われた。

PC1 PC2 PC3
0.36383 0.34966 0.28651
PC1 の寄与率: 36.383 %

その結果を表1に示したが、PC1、2,3の寄与率(全体の値をどれだけ説明しているか)に大差が無く、明確な主成分軸が見いだせないことが判明した。その理由は3つの角度変化量の相関が弱いためと考えられ、主成分分析によって3

つの角度を1つに圧縮することは困難であると考えた。

(8) ベクトル解析によるドローンの動揺解析

そこでベクトル解析によって動揺の数値化を試みた。

図 21 はドローンの上部に延ばした姿勢を示すベクトル(青)の1秒毎の風速変動による変化を示している。そこでベクトルの頂点の変化量(緑のベクトルの長さ)を姿勢変化量にすることを考えた。図はドローンの後ろから見て左から風が吹き、右方向に流されないよう

図 21 ベクトル解析イメージ

に飛行しているイメージ図である。 この図ではバンク角だけが変動しているが、実際はピッチ、ヨーも含む3つの角度が変動する。従って青いベクトルの変化を示す緑ベクトルは時々刻々と変化する3次元のベクトルであり、3軸姿勢角の変化ベクトル長を姿勢変化量として考えた。

このように各瞬間の姿勢変化値 を算出し、これまでと同様にその 瞬間から遡って 60 秒間の過去か

ら60秒間の未来のデータを姿勢変化量と考えた。

このようにドローンの姿勢変化量が定量化されたが、この値とラプラス乱流強度の相関 も検証した。

(9) 観測日

下表に観測日と観測装置、観測内容を記した。

表 2 観測記録

日時	地上測定	地上測定	飛行測定	飛行測定	観測メモ
	TriSonica	ULSA M5B	Mavic2S+	Mavic3+	
			TriSonica	HWS	
2024/11/11	0				
2024/11/23			0		
2024/11/29			0		
2024/12/01			0		静穏
2024/12/09			0		
2024/12/14			0		中程度の風速
2024/12/19			0		中程度の風速
2024/12/22	0			0	強風
2024/12/29				0	静穏
2024/12/31	0			0	強風(田圃上空)
2025/01/07		0	0	0	強風複数ドローン
2025/01/13		0	0	0	強風複数ドローン
2025/01/17		0	0	0	強風複数ドローン
2025/01/25		○車載型	\circ	\circ	強風複数ドローン
2025/01/31	\circ			\circ	強風
2025/02/11	\circ				強風
2025/02/16		0			サーマルコンディション
2025/02/17		0			夜間観測
2025/02/20		0			
2025/03/07		\circ	\circ	\circ	強風複数ドローン
2025/03/09		0	0	0	やや強風複数ドローン
2025/03/14				0	公民館広場周辺
2025/03/15		0			24 時間観測
2025/03/18		0			24 時間観測
2025/03/22				0	スキー場跡地での観測
2025/03/23		0			36 時間観測
2025/03/27		0			暖かい日

(10) 代表日の結果 (2025/01/25)

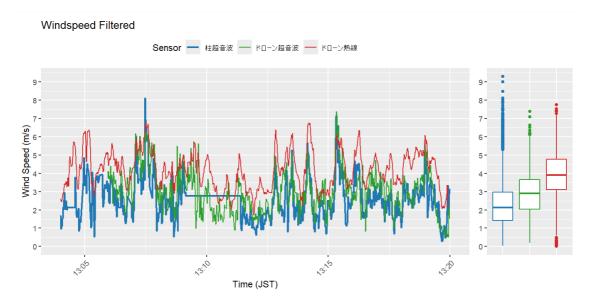
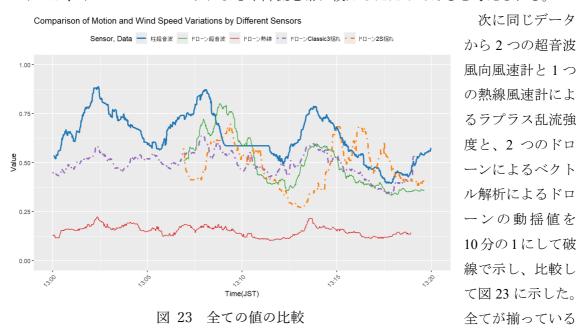



図 22 超音波風向風速計、熱線風速計の風速値の比較

最初に 2025 年 1 月 25 日に各風速計で観測した風速を比較したものが図 22 である。柱に設置した超音波風向風速計 ULSA M5B(青:一部区間欠損値あり)とドローン(Mavic2S)上部に装着した超音波風向風速計 TriSonica Mini(緑)は概ね一致しているが、ドローン(Mavic3)前部に装着した熱線風速計 HWS-19-ONE(赤)は右の箱ひげ図に示したように他の 2 つに比較して値が大きいという傾向が確認できた。この理由は前方に突きだしたセンサーが、ドローンのプロペラによる下降流を常に検知したためであると考えられる。

時間は約11分ほどであるが、柱に設置した超音波風向風速計(青)を真の値と見做して、 おおよそ次の傾向を読み取ることができる。

● 熱線風速計(赤)によるラプラス乱流強度は他の2つに比較して小さい。これは熱線風速計の特性により、その測定値の変化が緩慢であるのが原因であると考えられる。

- 柱に設置した超音波風向風速計(青)と同じ傾向にあるものは Mavic3 Classic の動揺値であり、次に似通っているのはドローンに装着した超音波風向風速計(緑)である。
- Mavic2S の動揺値 (オレンジ) は柱に設置した超音波風向風速計と同じ傾向にあると は考えられない

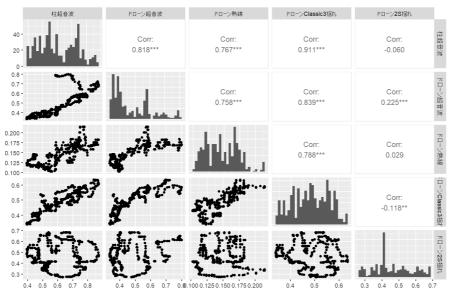


図 24 全ての値の相関関係

次に同じデータから、多変量相関の把握の GGally R 言語の GGally の ggpairs() を行いては2つのとは2つのとは2つのとは2句係係では2つのとはも、相関係であるののはない。

次に記された*マークの意味は下記の通りである。

*: p < 0.05 (有意)

** : p < 0.01 (1%水準で有意)

*** : p < 0.001 (0.1%水準で有意)

なし:有意ではない (p >= 0.05)

これによると柱に設置した超音波風向風速計と最も相関が認められるものは Mavic3 Classic のベクトル解析から得られた動揺値であり、次に Mavic2S の上部に装着した超音波風向風速計 TriSonica Mini であった。Mavic2S の動揺値に関しては図 23 の傾向と併せて考察すると時間遅れのため相関がほとんど無い結果になった。その原因はドローン上部にとりつけた超音波センサーをプロペラによって発生する下降流の影響を小さくするために上部に長く突き出して固定したため、乱流に遭遇すると不安定になって姿勢が大きく変化した事にあると考えられた。

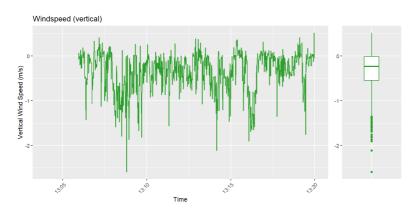


図 25 風速の鉛直流成分

そこで下降流の影響を 把握するために超音波風 速計 TriSonica Mini に記 録された鉛直流成分を図 25 のグラフにした。この 図から常に一定の下降流 が観測されている。これ は本来の風とドローンの プロペラによる下降流が 合成されたものであると

考えられ、その平均値から 0.2m/s の下降流がドローンによって発生しているものと考えられた。

この結果を受けてバーティポートを想定した周辺の観測と可視化を Mavic3 と HWS の組み合わせで実施した。

図 26 公民館観測軌跡

図 27 スキー場駐車場跡地観測軌跡

図 26 は 2025 年 3 月 14 日に公民館 敷地から 5 方向にドローンを定速で 飛行させながらラプラス乱流強度を 測定し、Google Earth の空間内に可視 化したものである。値は円アイコン大 きさで示している。赤い円は最も値が 大きく、ドローンの姿勢変化が激しかった箇所であり、可能な限りこの場所 を避けた空飛ぶクルマの離発着経路 を設定すべきであると考えられる。

次に2025年3月22日にスキー場駐車場跡地で同様に行った際の軌跡を図27に示す。この時は手動操縦に加えて自動飛行によって予め設定された矩形および円形の経路に沿って飛行しながら測定し、その有効性を確かめた。最後に本研究の事前研究として2024年1月15日に行った観測結果を図28に示した。この観測では移動、ホバリングを繰り返して定点観測を様々な地点、高度で行った。このよう

に空間内の一点の測定では、その場所の乱気流の時間推移を把握することができるが、空間内の様々な地点を1台の装置で同時に測定することは困難である。一方、図26、27のように空間内を飛行しながらの測定は様々な地点の測定が可能になるが、各地点での時間推移

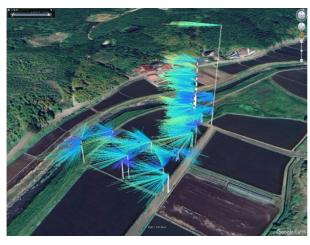


図 28 ホバリング時の風向風速

を把握することができない。したがって3次元空間内の乱流の時間推移を評価するためには両者を組み合わせる必要がある。

表 2 に示した観測についてこのほかに も解析を行ったが、データと結果の一 部、及び解析した際のプログラミング コードは GitHub (12) で公開している。

6. 結び

本研究は大気の乱れを数値化し、バーティポートを想定した場所でドローンに搭載した 風向風速計などを用いて空間上の乱気流の度合いの可視化を実証した。その過程で多くの 事が明らかになった。以下にまとめる。

ラプラス乱気流強度について

- 粒度1秒のデータにする際にフィルタリング処理が重要になる。
- 算出にあたって風速の成分を計算する軸を限定しなくても問題ない。
- 風速をそのまま計算して尺度母数 b を算出しても問題は無い。従って熱線風速計で も算出可能。
- 測定機器の特性によってその値が変化する。
- ドローンの動揺との高い相関が確認された。従ってドローンを飛行する事でラプラス乱気流強度を推算できる。

ドローンの飛行について

- ホバリングによって空間内の 1 点のラプラス乱気流強度の時間推移を計測できる事を実証した。
- 定速直線飛行によって空間内の直線のラプラス乱気流強度の空間変化を計測できる 事を実証した。

近い将来の空飛ぶクルマの運航開始にあたって、バーティポートの乱気流の観点からの 安全性評価、及び離発着経路の最適設計を行う必要があるが、ドローンを活用した3次元空 間内の乱気流測定は重要な取り組みである。そのために本研究は理論の確認と簡略型測定、 計算方法の実証、常時公開サイトによる確認、そして実際の測定の試行、可視化を行った。

本研究は、ラプラス乱流強度という連続量で大気の乱れを表現し、地上計測とドローン計測の役割分担によって時間・空間の両次元をカバーし、風速ベース・姿勢ベースの二系統で相互検証した点に新規性を有する。

また、連続値のラプラス乱流強度 b は、1 秒での風速変化の閾値とその変化が起こる確率を用いてバーティポート選定や離着陸可否判断を確率基準で統一できる。

限界として、測定幅、粒度という設定に依存し、機種差(センサー応答・ドローン制御則・ ダウンウオッシュ回避距離)により b と姿勢変化の対応が機体固有になり得ることが挙げ られる。今後は機種横断の較正係数整備、地形条件別の基準値作成、長期データに基づく季 節性の評価を進めたい。

本報告書は研究の全体的な概念について数式を用いずに記述した。また、その結果の一部を紹介した。そのため改めて学術論文として発表する予定である。

7. 謝辞

本研究は第 14 回気象文化大賞の助成を受けて遂行されました。厚く感謝申し上げます。

8. 参考文献、参考 URL

- 1)https://www.jma.go.jp/jma/kishou/know/yougo hp/kaze.html
- 2)https://www.jma.go.jp/jma/kishou/know/kouku/2 kannsoku/21 kannsoku/21 kannsoku.html
- 3)https://www.mlit.go.jp/common/001218180.pdf
- 4)https://www.mlit.go.jp/common/001362925.pdf
- 5) Kida, Shigeo, and Youichi Murakami. 1989. 'Statistics of Velocity Gradients in Turbulence at Moderate Reynolds Numbers'. *Fluid Dynamics Research* 4 (5–6): 347. https://doi.org/10.1016/0169-5983(89)90004-X.
- 6) Ito, Koji, Haruka Ohba, and Shinya Mizuno. 2024. 'Low-Level Turbulence Risk Assessment and Visualization Using Temporal Rate of Change of Headwind of an Aircraft'. *Journal of Big Data* 11 (1): 158. https://doi.org/10.1186/s40537-024-01032-2.
 - 7) https://www.jepico.co.jp/lp Anemoment.html
- $8) https://strvsn.net/wp-instl/wp-content/uploads/2025/03/250330_ULSA_PRO_A4-compressed.pdf$
 - 9) https://www.sg-lab.info/sensors/hws-19-one/
- 10) http://ito-lab.mobi:3000/public-dashboards/23d519078ada48128335348fc2730135
- 11) https://youtu.be/_nwP-nkDs1k
- 12) https://github.com/e-i314/wind

9. 補足

本報告書の4章に関する研究成果は2025年10月15日に開催される日本航空宇宙学会第63回飛行機シンポジウムで発表する予定である。